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Introduction 

n  The spectral element method (SEM) is a high-order weighted residual 
technique in which the computational domain is tessellated into 
–  curvilinear squares or triangles in 2D, or 
–  curvilinear bricks or tetrahedra in 3D. 

n  Within each of these elements (squares, bricks, etc.) the solution is 
represented by Nth-order polynomials, where N=5-15 is most common but 
N=1 to 100 or beyond is feasible. 

2D basis function, N=10 
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SEM & Transport Phenomena 

n  The main advantage of the SEM is manifest in transport problems that are 
characterized by first-order differential operators in space, e.g. 

n  In nondimensional form, we have |u| ~1, ν = 1/Pe for (2) and ν =1/Re for (3), 
respective inverse Peclet and Reynolds numbers, which are small (e.g., 
10-4-10-6) for most engineering problems. 

n  Such problems are characterized by minimal dissipation à  
 The solution propagates for long times with minimal decay or energy loss. 
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SEM & Transport Phenomena 

n  These problems are particularly challenging because, unlike diffusion, where 

 implies rapid decay of high wavenumber (k) components (and errors), the high-k 
components and errors in advection-dominated problems persist. 

 
 

n  Turbulence provides a classic example of this phenomena: 

(a) 

 
 

(b) 

Turbulent pipe flow: 

(a) Reτ = 550 

(b) Reτ = 1000 
by G.K. El Khoury, KTH 
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Turbulence in an IC Engine 
Starting with an .stl file, 
mesh is made with 
CUBIT. 
 
The lower panel shows 
the mesh motion. 
 
Lower-right shows a very 
fine mesh used for the 
intake port. 
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Vortex Breakdown at ReD = 15,000 

n  These are extremely well resolved calculations performed on Mira. 
n  Note the highly-resolved filamental horseshoe vortices around the base 

of the valve stem that ultimately break down into a hairpin vortex chain.   
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Influence of Reynolds Number 

n  The Reynolds number has a 
significant impact on the scales 
of motion. 

n  The Reynolds number in the 
intake port of the TCC engine 
peaks at around Re=45000 at 
670 RPM. 

n  The Reynolds number in the 
combustion chamber is about 
Re=15000.  

ReD=30,000 

ReD=45,000 
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Spectral Element Method:  Exponential Convergence 

Exact Navier-Stokes Solution  (Kovazsnay ‘48) 
❑  4 orders-of-magnitude 

error reduction when 
doubling the resolution in 
each direction 

❑  For a given error, 
❑  Reduced number of gridpoints  

❑  Reduced memory footprint. 

❑  Reduced data movement. 
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The SEM provides excellent transport properties, 
even for non-smooth solutions 

Convection of non-smooth data on a 32x32    
  grid   (K1 x K1 spectral elements of order N). (cf. Gottlieb & Orszag 77) 
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Relative Phase Error for h vs. p Refinement:  ut + ux = 0 

  h ref.          p ref. 
  p=4          h = 1/16 

 
  

 
n     kmax := n/2 
 
n  Fraction of accurately resolved modes is increased              

only through increasing order ( N  or p )  

k/kmax k/kmax 
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Influence of Scaling on Discretization 

 Large problem sizes enabled by peta- and exascale computers allow propagation of 
small features (size λ)  over distances L >> λ.     If speed ~ 1, then tfinal ~ L/ λ. 

–  Dispersion errors accumulate linearly with time:  
  
~|correct speed – numerical speed| * t  (for each wavenumber) 

! errort_final ~ ( L / λ ) * | numerical dispersion error | 

–  For fixed final error εf, require:  numerical dispersion error ~ (λ / L)εf, << 1. 

–  We want methods with low dispersion error! 

High-order methods can efficiently deliver small dispersion errors.            
                                                    (Kreiss & Oliger 72,  Gottlieb et al. 2007) 
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Linear Advection Example 

n  Here, we consider linear advection with periodic BCs on [0,1]: 

n  With speed c = 1, the travelling wave 
solution should return to the initial 
condition after each unit time. 

n  This result is not realized numerically, 
especially for low-order discretizations. 

n  Although the initial condition (black) is 
well-resolved with n=200 points, the 2nd-
order solution exhibits trailing waves (red) 
even after one revolution. 

t=1 
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Numerical Dispersion, 2nd-order Spatial Discretization 

n  At later times, the dispersion just becomes worse… 

t=1 t=2 

t=3 t=4 
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Cumulative Dispersion at t=10 for Varying Order & Resolution 

Finite Difference, n=200                             SEM,  n=90 

2nd-order 

 

 

 

 
 

4th-order 

N=2 

 

 

 

 
 

N=9 
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Computational Savings 

n We observe that with only 90 points the 9th-order SEM is 
able to outperform 4th-order finite differences with 200 
points. 

n This translates into > 8x reduction in the number of points 
for problems in 3D. 

n We will see that the cost-per-gridpoint for the two 
methods is essentially the same, meaning that the SEM 
offers an order-of-magnitude reduction in computational 
costs for this class of problems. 

15 
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Matlab Demos 

n  demo_fd2.m 

n  demo_fd4.m 

n  demo_sem90.m 



Argonne National 
Laboratory 17 

Cumulative Dispersion at t=10 for Varying Order:  FD & SEM 

n  The 90 point SEM with N=9 has much less dispersion                                             
than 4th-order FD with n=200 points. 

n  This +2X savings in 1D translates into > 8X savings in 3D.  
(To leading order, cost ~ n.) 

n  Note that one can also go to higher order FD (and there are 
some advantages over SEM).    

n  However, there are also many advantages (BCs, geometric 
flexibility) to the SEM.  

Finite Difference, n=200                      SEM,  n=90 

4th-order N=9 
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SEM Derivation 

n We turn now to the heart of the course. 

n We will begin with development of the SEM in 1D for the  
–  Poisson equation 
–  steady convection-diffusion 
–  unsteady advection 

 These are constituent subproblems in the simulation of 
incompressible flows. 

n We then turn to higher space dimensions, with a primary focus on 
2D, for conciseness. 
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Spectral Element Method:  1D 
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Trial Solution and Residual 
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Trial Solution and Residual 
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WRT and Test Functions 
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Reducing Continuity to C0 
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Weighted Residual / Variational Formulation 
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Important Properties of the Galerkin Formulation 
n  An essential property of the Galerkin formulation for the Poisson 

equation is that the solution is the best fit in the approximation space, 
with respect to the energy norm. 

Specifically, we consider the bilinear form, 

  and associated semi-norm,  

  which is in fact a norm for all u satisfying the boundary conditions. 

n  It is straightforward to show that our Galerkin solution, u, is the closest 
solution to the exact ũ in the a-norm.   That is, 

    || u – ũ ||a   ≤   || w – ũ ||a    for all w ∈  X0
N 

 

n  In fact, u is closer to ũ than the interpolant of ũ. 
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Best Fit Property,  1/4 
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Best Fit Property,   2/4 
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Best Fit Property,    3/4 

 0 because 
of BCs 
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Best Fit Property     4/4 
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Best Fit Viewed as a Projection 
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Formulation of the Discrete Problem 

n  Up to now, we have dealt with abstract issues and have established 
the important best-fit property. 

n  From here on, we move to more practical issues. 
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Formulation of the Discrete Problem 
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Formulation of the Discrete Problem 
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Formulation of the Discrete Problem 
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Choice of Spaces & Bases 

n  At this point, it’s time to get specific and choose the space, X0
N, 

and associated basis, { φi }. 

n  The former influences convergence, i.e., 

–  How large or small n must be for a given error. 

n  The latter influences implementation, i.e., 
–  details and level of complexity, and 
–  performance (time to solution, for a given error). 

n  Keep in mind that our goal is to solve high Re / Pe flow problems, 
so the convergence question is driven by considerations in the 
convection-dominated limit. 

n  Interestingly, for incompressible or low Mach-number flows, the 
performance question is largely driven by the pressure-Poisson 
equation, which governs the fastest time-scale in the problem. 



Argonne National 
Laboratory 36 

Incompressible Navier-Stokes Equations 

 Reynolds number  Re > ~1000  
–  small amount of diffusion 
–  highly nonlinear (small scale structures result) 

 Must discretize in space and time… 
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Spaces and Bases for the SEM 

n  For the spectral element method in R1, we choose XN to be the space 
of piecewise polynomials of degree N on each element, Ω e, e=1,…,E.  
For example: 

                                   
 
 

n Within each element, one has a choice between modal or nodal bases. 

n  The choice is largely immaterial because of the best-fit property. 

n  It is easy to convert from modal to nodal and back, provided that both 
representations are stable. 

n  So, within a given code, we might alternate between representations, 
depending on the operation at hand. 

E=5 
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Unstable and Stable Bases within the Elements 
n  Examples of unstable bases are: 

–  Monomials (modal):   φi = xi 
–  High-order Lagrange interpolants (nodal) on uniformly-spaced 

points. 

n  Examples of stable bases are: 
–  Orthogonal polynomials (modal), e.g., 

•  Legendre polynomials:  Lk(x),   or  
•  bubble functions: φk(x) := Lk+1(x) – Lk-1(x).  

–  Lagrange (nodal) polynomials based on Gauss quadrature 
points (e.g., Gauss-Legendre, Gauss-Chebyshev, Gauss-
Lobatto-Legendre, etc.) 

n  For the SEM, we typically use nodal bases on the Gauss-Lobatto-
Legendre (GLL) quadrature points.  However, we often map back 
and forth between GLL-based nodal values and Legendre or 
bubble function modal bases, with minimal information loss. 
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Aside:  GLL Points and Legendre Polynomials 
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Lagrange Polynomials: Good and Bad Point Distributions 

 
 
N=4 
 
 

 
N=7 
 

                                                                          φ2                  φ4 

 

N=8 
 
 
 

                      Uniform      Gauss-Lobatto-Legendre 
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Piecewise Polynomial Bases: Linear and Quadratic 

n  Linear case results in A being tridiagonal (b.w. = 1) 

n Q: What is matrix bandwidth for piecewise quadratic case? 
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 Basis functions for N=1, E=5 on element 3. 

Ω 1              Ω 2            Ω 3             Ω 4           Ω 5 

Ω 1              Ω 2            Ω 3             Ω 4           Ω 5 
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Ω3 basis functions for N=2, E=5  

Ω 1              Ω 2            Ω 3             Ω 4           Ω 5 
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Ω3 basis functions for N=3, E=5  

Ω 1                 Ω 2               Ω 3              Ω 4               Ω 5 
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Á0 

Á1 

Á2 

ÁN 

45 

Ω3 basis functions for N=3, E=5  

Ω 1                 Ω 2               Ω 3              Ω 4               Ω 5 

n  Notice that Á0 and ÁN are also nonzero in the neighboring elements, 
because of the requirement XN ½ H1 . 
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Ω3 basis functions for N=4, E=5  

Ω 1                 Ω 2               Ω 3              Ω 4               Ω 5 
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Ω3 basis functions for N=5, E=5 

Ω 1                 Ω 2               Ω 3              Ω 4               Ω 5 
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Ω3 basis functions for N=6, E=5 

Ω 1                Ω 2               Ω 3              Ω 4               Ω 5 
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Ω3 basis functions for N=10, E=5 

Ω 1                 Ω 2               Ω 3              Ω 4               Ω 5 
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Local Modal Bases, N=8 

• Modal bases are particularly useful for filtering  (higher k à higher frequency). 

• It is easy to convert between stable nodal and modal bases. 
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Working with 1D Nodal Bases on GLL Points 

51 
trap_v_gll.m, trap_txt.m 
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Working with 1D Nodal Bases on GLL Points 

52 
trap_v_gll.m, gll_txt.m 
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Working with 1D Nodal Bases on GLL Points 

53 

Spectral  
 Convergence 
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Working with 1D Nodal Bases 

n What is the convergence behavior for highly oscillatory functions?  

54 
trap_v_gll_k.m 
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Working with SEM Bases – 1D 

n  Keys to high-performance in 3D: 
1.  Low numerical dispersion (2x savings in each direction, 8x overall) 
2.  Element-by-element assembly of solution and data 
3.  Use of GLL-based Lagrangian interpolants and quadrature 

•  diagonal mass matrix, fast operator evaluation 
4.  Global (and local!) matrix-free operator evaluation 
5.  Fast tensor-product based local operator evaluation 
6.  Fast tensor-product based local inverses 
7.  Matrix-matrix product based kernels 

n  Only 1—3  are applicable in 1D. 
n  We’ll start with 2 and 3, and come back to 4-7 shortly. 
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Working with SEM Bases – 1D 

n  Recall our global system to be solved: 
   A u = B f 

n  For most discretizations (finite difference, finite volume, finite element, 
spectral element, etc.) iterative solvers are the fastest possible in 3D. 

n  These solvers require only the action of a matrix times a vector (usually 
implemented via a subroutine) and do not require explicit formation of 
the matrix or its LU factorization. 

n  Thus, we consider matrix-free operator evaluation in which we never 
form the global nor (ultimately in 2D or 3D) the local stiffness matrix. 

n  It is nonetheless useful to understand the matrix assembly process, as 
notation and analysis in linear algebra is quite helpful.  
–  Also, for matlab, it generally pays to assemble the 1D matrices. 
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Spectral Element Bases, 1D 
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Spectral Element Bases, 1D 
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Spectral Element Bases, 1D 
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Local 1D Stiffness Matrix 
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Assembly of 1D Stiffness Matrix 



Argonne National 
Laboratory 62 

Assembly of 1D Stiffness Matrix 
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Working with the unassembled matrix, AL 
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What about Continuity ? 
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Continuity is reflected by global numbering: 

Local (elemental) numbering: 

Global numbering: 
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Continuity is reflected by global numbering: 
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Continuity is reflected by global numbering: 
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Continuity is reflected by global numbering: 
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Continuity is reflected by global numbering: 

Local (elemental) numbering: 

Global numbering: 
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Continuity is reflected by global numbering: 
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Stiffness Matrix Assembly 



Argonne National 
Laboratory 72 

Application of Homogeneous Dirichlet Conditions 
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Application of Homogeneous Dirichlet Conditions 
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Application of Homogeneous Dirichlet Conditions 
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Application of Homogeneous Dirichlet Conditions 
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Application of Homogeneous Dirichlet Conditions 
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Summary: SEM Stiffness Matrix 
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SEM Mass Matrix 
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Correcting the RHS 
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Final System of Equations 
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Final System of Equations 
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BREAK 
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SEM, Next Steps 

n  Lecture 2:  1D 
–  GLL quadrature 
–  Other BCs:  Neumann 
–  Advection 
–  Nonlinear example 

n  Lecture 3:  2D and 3D 
–  Matrix formulation 
–  Curvilinear / mesh transformations 
–  Preconditioned iterative solvers 
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Quadrature Rules for the SEM 

n One of the primary reasons for choosing Gauss-Lobatto-Legendre 
points as nodal points is that they yield well-conditioned systems.  
(More on this point shortly.) 

n  It also allows us to significantly simplify operator evaluation, 
especially in 3D, which is where cost counts the most! 

n  Let’s begin with the stability (i.e., conditioning) issue. 
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Conditioning of the SEM Operators 

n  The condition number, κ,  of a linear system governs the round-off error and, 
ultimately, the number of correct digits retained when multiplying a vector by 
a matrix or its inverse. 

n  For a symmetric positive definite (SPD) matrix A (as in our case), κ is the 
ratio of max to min eigenvalues: 

	

 	

 	

 	

κ ~ λmax / λmin	



n  If κ ~ 10 k,  you can expect to lose ~ k digits when solving Au = g,     so a 
smaller condition number is better. 

n  As indicated earlier, the condition number of A is governed by the choice of 
basis functions. 

n  In infinite-precision arithmetic, however, the choice is immaterial since the 
Galerkin scheme ensures that we would get the same best-fit solution. 
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Condition Number of A vs. Polynomial Order 

Monomials: xk 
 

 
 
 
                 Uniformly spaced nodes 
 
 
 
 
 
 
                 GLL Points ~ N 3 

n  Monomials and Lagrange interpolants on uniform points 
exhibit exponentional growth in condition number. 

n  With just a 7x7 system the monomials would lose 10 
significant digits (of 15, in 64-bit arithmetic). 
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Quadrature for the SEM 
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What is the highest possible polynomial order, M? 
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Gauss-Lobatto-Legendre Quadrature for the SEM 
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Quadrature for the SEM 
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Quadrature for the SEM 



Argonne National 
Laboratory 92 

Quadrature for the SEM 
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Quadrature for the SEM 
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Let’s Look at Some Examples 

var_1d_poission.m 
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Convection-Diffusion Example 
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Convection-Diffusion Example 
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Convection-Diffusion System of Equations 
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CD: Solution and Error, ν = 10-2, E=3, N=21 

err x 10-11 

n  Here, in order to resolve the boundary layer, the last element 
is 1/3 the size of the others.   The error is 2.e-12. 

steady_1d_cd.m 
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Matlab Code for Steady State Convection-Diffusion 

…
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Matlab Demo:  steady_1d_cd.m 

n What happens when we vary ν ? 

n  Try small ν for n even and n odd.  Is there any significant difference? 

n  For small ν, can you refine your mesh (h, p, or r refinement) to 
recover a good solution? 

n  Exercise for later:   

–  Examine the behavior when you time-march the solution to a 
steady state, both with and without a stabilizing filter. 

–  What is the impact of the filter in the well-resolved case? 
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Inhomogeneous Neumann Condition   (1/4) 



Argonne National 
Laboratory 10
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Inhomogeneous Neumann Condition  (2/4) 
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3 

Inhomogeneous Neumann Condition  (3/4) 
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Inhomogeneous Neumann Condition (4/4) 
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Modify Steady State Convection-Diffusion 

…
 

Q:  How should we modify the 
steady state convection-diffusion 
solver for a Neumann condition at 
x=1 ? 

 
   steady_1d_cd.m  ? 
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Unsteady Convection-Diffusion Example 
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7 

Unsteady Convection-Diffusion Example 
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BDFk Formulas:  GTE = O(¢tk) 

= O(nfinal∆t2)

= O(∆tT )

= O(∆t)T.

We refer to GTE as the global truncation error. It is the error in the final result at time T . Note
that, if we reduce ∆t, we must increase nfinal = T/∆t so that we compare errors at the same final
time T . Invariably, LTE = ∆tGTE. Moreover, GTE scales as T . Longer time integration thus
implies a need for a smaller truncation error. In the case of EB and EF the GTE is O(∆t), that is,
the methods are first order in time. We would expect therefore that reducing ∆t by a factor of 2
(and doubling the number of timesteps) would reduce the temporal error at time T by a factor of
2.

To generate higher-order methods one has several choices. Here, we consider backward-difference
formulae of order k (BDFk). These methods offer flexibility in terms of order and stability. Al-
though classic BDFk is implicit, we show how they can be combined with extrapolation to develop
explicit or even semi-implicit methods.

The idea behind BDFk is to approximate du
dt at time the current timestep, tn, with a finite

difference formula based on the unknown value, un, and known past values un−1, un−2, . . . , un−k.
One way to generate the finite difference formula is to fit an interpolating polynomial of degree
k through the solution u(t) at time points tn, tn−1, . . . , tn−k and evaluate the derivative of this
polynomial at the current timestep level, tn. The situation is as pictured in Fig. 3. For uniform

∆t, the formulas for k = 1, 2, and 3 are

BDF1: ∂u
∂t

∣

∣

∣

tn
=

un − un−1

∆t
+ O(∆t) (38)

BDF2: ∂u
∂t

∣

∣

∣

tn
=

3un − 4un−1 + un−2

2∆t
+ O(∆t2) (39)

BDF3: ∂u
∂t

∣

∣

∣

tn
=

11un − 18un−1 + 9un−2 − 2un−3

6∆t
+ O(∆t3). (40)

The right hand side of the ODE can either be evaluated directly at time tn, in which case the
method is implicit, or by using kth-order extrapolation.

To illustrate the procedure, we consider the case k=2 using the model problem

du

dt
= g(u, t) + f(u, t). (41)

To begin, evaluate each term at time tn,

du

dt

∣

∣

∣

∣

tn
= g(u, t)|tn + f(u, t)|tn . (42)

and choose a method of approximation for each. For the time derivative, we use the BDF2 for-
mula (39). If g is nonlinear and governing relatively slowly evolving behavior, it might be most
conveniently evaluated explicitly using 2nd-order extrapolation. Conversely, if f is governing fast
behavior, one might need to treat it implicitly. Such an approach gives rise to the following semi-
implict scheme,

3un − 4un−1 + un−2

2∆t
+O(∆t2) =

(

2gn−1 − gn−2 +O(∆t2)
)

+ f(un, tn), (43)

10

n  k-th order accurate 
n  Implicit 
n  Unconditionally stable only for k · 2 
n Multi-step:  require data from previous timesteps 
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Unsteady Convection-Diffusion Example 
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Spatial – Temporal Discretization 
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Spatial – Temporal Discretization 
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Additional Timestepping Considerations 
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Additional Timestepping Considerations 
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Stability of Various Timesteppers 

n  Derived from model problem 

n  Stability regions shown in the λΔt plane  (stable inside the curves) 

~ 0.72 

n  To make effective use of this plot, we need to know something about 
the eigenvalues λ of the discrete convection operator. 

n  But first, How are these plots generated? 
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Determining the Neutral-Stability Curve 
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6 

Matlab Code:  stab.m 



Argonne National 
Laboratory 11

7 

Relating Stability Region to Δt 
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8 

Relating Stability Region to Δt 
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Relating Stability Region to Δt 
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0 

Unsteady Convection-Diffusion Example 

BDF terms 

Extrapolated convection term 

Implicit solve 

Map back to local form 
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SEM in 2D and 3D 
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SEM in 2D and 3D 

n Objectives: 

–  Look at function definitions in 2D for a single element. 

–  Evaluate the Laplace operator w := Au in 2D and 3D. 

–  Explore preconditioning strategies for iterative solution of Au = g. 

–  Consider convection issues in 2D and 3D. 
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SEM in Higher Dimensions 
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SEM in Higher Dimensions 
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2D basis function, N=10 

Spectral Element Basis Functions in 2D 

n  Nodal (Lagrangian) basis: 

n  ξj = Gauss-Lobatto-Legendre quadrature points: 
 - stability ( not uniformly distributed points ) 
 - allows pointwise quadrature (for most operators…) 
 - easy to implement BCs and C0 continuity 

 
n  Tensor-product forms:  key to efficiency! 
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Local Spectral Element Basis in 2D 

N=10 

N=4 
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Spectral Element Operator Evaluation 

Consider evaluation of the partial derivative 
p q

pq
uw
x ξ ξ

∂
=
∂
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2D basis function, N=10 

Geometric Deformation in 2D 
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Evaluation of a(v,u) 
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Evaluation of a(v,u) 
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Evaluation of a(v,u) 
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Evaluation of a(v,u) in R3 
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Comparison of A in 2D and 1D 
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Generation of Mesh Deformaton 
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Gordon-Hall Mapping for Mesh Deformation 
n  Vertex deformation + Edge perturbations + Face perturbations 

n  Each perturbation function vanishes at the edge or face boundary, and 
is blended linearly to the opposite side 
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Gordon-Hall Mapping for Mesh Deformation 
n  Vertex deformation  

   + Edge perturbations  
     + Face perturbations 
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Care In Mesh Morphing 

n  Mesh morphing is very easy and adequate for many applications. 

n  Care must be used with non-affine mappings.  Otherwise, the stability 
derived from the GLL point distribution may be lost, e.g., stretching x=r α : 

  Can be cured by first morphing entire mesh, extracting vertex values, and re-
applying Gordon-Hall   (in Nek5000, usrdat() instead of usrdat2() ) 

n  Must avoid vertex angles near 0 and 180 deg – ill-conditioned systems. 

α = 1                α=1.4 
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Impact of Mesh on Iteration Convergence 
n  Iteration performance for conjugate-gradient iteration w/ overlapping 

Schwarz preconditioning 
n  For “shape-regular” elements, iteration count is bounded w.r.t. E & N. 

 Iteration count bounded 
 with refinement - scalable 
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Enforcing Continuity in 2D 
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Enforcing Continuity in 2D 
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Enforcing Continuity in 2D 
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Q and QT implemented as subroutines 
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Fast Operator Evaluation in 2D 

n  Fast operator evaluation is central to the success of the SEM. 

n  The end user is interested in a solution to a given accuracy, as fast as 
possible. 

n  The rapid convergence of high-order methods (often) implies a need for fewer 
points.  If it takes 10 times, longer to get the result, however, the method is 
not interesting. 

n  It turns out—for several reasons—that a properly implemented SEM is 
competitive with traditional methods on a point-by-point cost basis, which 
implies lower costs for the SEM because of the reduction in number of points. 

n  Many of the ideas central to the performance of the SEM were laid out by 
Steve Orszag in a seminal 1980 JCP article. 

n  These ideas were an insightful extension of his pioneering work in spectral 
methods in the 1970s. 
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Fast Operator Evaluation in 2D 
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Fast Operator Evaluation in 2D 



Argonne National 
Laboratory 14

6 

Matlab Demo:  mycg.m 
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Matlab Demo:  asem_2d.m 



Argonne National 
Laboratory 14

8 

Preconditioned Conjugate Gradient Iteration 

mat-vec 
 

 

preconditioner 
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Preconditioned Conjugate Gradient Iteration 
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Two-Level Overlapping Additive Schwarz Preconditioner  

d 

Local Overlapping Solves: FEM-based 
Poisson problems with homogeneous  

Dirichlet boundary conditions, Ae . 

Coarse Grid Solve: Poisson problem 
using linear finite elements on entire 

spectral element mesh, A0 (GLOBAL). 

(Dryja & Widlund 87, Pahl 93, PF 97, FMT 00) 
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Overlapping Additive Schwarz Smoother 
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Extension to Navier-Stokes 
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Navier-Stokes Time Advancement 

 

n  Nonlinear term:  explicit   

–  k th-order backward difference formula / extrapolation   ( k =2 or 3 ) 

–  k th-order characteristics   (Pironneau ’82, MPR ‘90) 

n  Linear Stokes problem: pressure/viscous decoupling: 
–  3 Helmholtz solves for velocity               (“easy” w/ Jacobi-precond.CG) 
–  (consistent) Poisson equation for pressure   (computationally dominant) 

n  For LES, apply grid-scale spectral filter            (F. & Mullen 01, Boyd ’98) 

  – in spirit of HPF model              (Schlatter 04) 
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Characteristics-Based Convection Treatment 
(OIFS Scheme - Maday, Patera, Ronquist 90, Characteristics - Pironneau 82) 

Idea:  Solve Navier-Stokes in 
Lagrangian framework: 
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Characteristics-Based Convection Treatment 
(OIFS Scheme - Maday, Patera, Ronquist 90, Characteristics - Pironneau 82) 
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Unsteady Stokes Problem at Each Step 

n  linear                                                        (allows superposition) 
n  implicit                                                      (large CFL, typ. 2-5) 
n  symmetric positive definite operators      (conjugate gradient iteration) 
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 PN - PN-2  Spectral Element Method for Navier-Stokes (MP 89) 

Gauss-Lobatto Legendre points 
(velocity) 

Gauss Legendre points 
(pressure) 

Velocity, u  in PN ,     continuous 
 Pressure, p in PN-2 ,  discontinuous 
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—

Navier-Stokes Solution Strategy 

n  Semi-implicit:  explicit treatment of nonlinear term. 
n  Leads to Stokes saddle problem, which is algebraically split 

                                        MPR 90, Blair-Perot 93, 
Couzy 95 

 

n  E - consistent Poisson operator for pressure, SPD 
–  Stiffest substep in Navier-Stokes time advancement 
–  Most compute-intensive phase  
–  Spectrally equivalent to SEM Laplacian, A	
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Pressure Solution Strategy: Epn = gn 

1.  Projection: compute best approximation from previous time steps  

–  Compute p* in span{ pn-1, pn-2, … , pn-l } through straightforward 
projection. 

–  Typically a 2-fold savings in Navier-Stokes solution time. 

–  Cost:  1 (or 2) matvecs in E per timestep 

2.  Preconditioned CG or GMRES to solve 

                               E Dp = gn - E p*  
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Initial guess for Axn = bn  via projection    ( A=E, SPD)	



  (best fit solution) 
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Initial guess for Epn = gn  via projection onto previous solutions 

n || pn - p*||A = O(Dtl) + O( etol )	



n two additional mat-vecs per step 

n storage:  2+lmax vectors 

n results with/without projection (1.6 million pressure nodes) 	



(F 93 98) 
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Overlapping Additive Schwarz Preconditioner for the Pressure 

d 

Overlapping Solves: Poisson problems 
with homogeneous Dirichlet bcs. 

Coarse Grid Solve: Poisson problem 
using linear finite elements on spectral 

element mesh (GLOBAL). 

(Dryja & Widlund 87, Pahl 93, PF 97, FMT 00) 
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Overlapping Schwarz Precondtioning for Pressure 
(Dryja & Widlund 87, Pahl 93, PF 97, FMT 00) 

z = P-1
 r = R0

TA0
-1 R0  r  +      Ro,e

TAo,e
-1 Ro,e r	



E 
S 	


e =1	



Ao,e  -  low-order FEM Laplacian stiffness matrix on overlapping domain 
             for each spectral element k (Orszag,  Canuto & Quarteroni, Deville & Mund,  Casarin) 	



Ro,e  -  Boolean restriction matrix enumerating nodes within 
            overlapping domain e  

A0  -  FEM Laplacian stiffness matrix on coarse mesh (~ E x E )	



R0
T  - Interpolation matrix from coarse to fine mesh 
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Overlapping Schwarz - local solve complexity 

n  Exploit local tensor-product structure 

n  Fast diagonalization method (FDM)  - local solve cost is ~ 
4d K N (d+1)                                                                                (Lynch et al 64) 
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2D Test Problem:  Startup flow past a cylinder  (N=7) 

Resistant pressure mode, p166 -  p25,   (K=1488) Residual history 
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Impact of High-Aspect Ratio Elements 

n  Nonconforming discretizations eliminate unnecessary elements in 
the far field and result in better conditioned systems. 

 Iteration count bounded 
 with refinement - scalable 
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Stabilizing Convection-Dominated Flows 
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Stabilizing High-Order Methods 
       

 In the absence of eddy viscosity, some type of stabilization is 
generally required at high Reynolds numbers. 

 
 Some options: 

 

–  high-order upwinding (e.g., DG, WENO) 
–  bubble functions 
–  spectrally vanishing viscosity 
–  filtering 
–  dealiasing 
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Spectral Filter  

n  Expand in modal basis: 

n  Set filtered function to: 

n  In higher space dimensions: 

n  Spectral convergence and continuity 
preserved.  (Coefficients decay 
exponentially fast.) 

n  Post-processing  (easy) ! 

Boyd ’98, F. & Mullen ‘01 
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Spectral Filter  

Transfer function characterized by two parameters: 
– amplitude, a ~ 0.01—0.25 
– cut-off wavenumber, kc 

Boyd ’98, F. & Mullen ‘01 

kc 

a 
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Numerical Stability Test: Shear Layer Roll-Up                                         
(Bell et al. JCP 89, Brown & Minion, JCP 95, F. & Mullen, CRAS 2001) 

2562 

2562 

1282 2562 

2562 1282 



Argonne National 
Laboratory 17

2 

Spatial and Temporal Convergence        (F. & Mullen, 01)   

Base velocity profile and perturbation streamlines 

 Error in Predicted Growth Rate for  
Orr-Sommerfeld Problem at Re=7500 

(Malik & Zang 84) 
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Filtering permits Red99 > 700 for transitional boundary 
layer calculations 

blow up 

Re = 700 

Re = 1000 

Re = 3500 
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Why Does Filtering Work ?   
( Or, Why Do the Unfiltered Equations Fail? )

     
Double shear layer example: 

Ok 
High-strain regions 
are troublesome… 
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Why Does Filtering Work ?   
( Or, Why Do the Unfiltered Equations Fail? )

     
Consider the model problem: 
 
 
Weighted residual formulation: 
 
 
 
 
 
 
 
 
Discrete problem should never blow up. 
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Why Does Filtering Work ?   
( Or, Why Do the Unfiltered Equations Fail? )

     
 Weighted residual formulation vs. spectral element method: 

 
 
 
 

 This suggests the use of over-integration (dealiasing) to ensure 
that skew-symmetry is retained   

( Orszag ’72, Kirby & Karniadakis ‘03, Kirby & Sherwin ’06) 
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Aliased / Dealiased Eigenvalues:   
   

n  Velocity fields model first-order terms in expansion of straining and rotating flows. 
–  For straining case,    

–  Rotational case is skew-symmetric.  
–  Filtering attacks the leading-order unstable mode. 

               N=19, M=19           N=19, M=20 

  c = (-x,y) 
 
 
 
 
   

  c = (-y,x) 
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Stabilization Summary 

n  Filtering acts like well-tuned hyperviscosity 

–  Attacks only the fine scale modes (that, numerically speaking, 
shouldn’t have energy anyway…) 

–  Can precisely identify which modes in the SE expansion to 
suppress (unlike differential filters) 

–  Does not compromise spectral convergence 

n  Dealiasing of convection operator recommended for high 
Reynolds number applications to avoid spurious eigenvalues 

–  Can run double shear-layer roll-up problem forever with  
                  

    – ν = 0 ,                                                                                   

    – no filtering 
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Dealiased Shear Layer Roll-Up Problem, 1282 

n = 0, no filter                                 n = 10-5, no filter                           n = 0,  filter = (.1,.025) 

    However, Johan Malm established that we do eventually get blow-up with the case on the left! 
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Thank you! 
 

Time for Questions! 
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Stability Region for Euler’s Method 

 |                 | 

-2              -1 

Stable 

Unstable 
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MATLAB EXAMPLE:   Euler for y’ =  ¸ y   
(ef1.m) 

Stable 

Unstable 
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Stability Region for Euler’s Method 

 |                 | 

-2              -1 

Stable 

Unstable 

Why complex plane? 
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Recall: Orbit Example 

d

dt

 
x

y

!
=

"
0 �1

1 0

#  
x

y

!
= Ay.

dy

dt

= Ay

���A � �I

��� =

�����
�� �1

1 ��

�����

= �

2 + 1 = 0

� = ±i

1

•  Even though ODE involves only reals, the behavior can be 
governed by complex eigenvalues. 
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Growth Factors for Real  ̧

¸¢t ¸¢t ¸¢t 

G 

n  Each growth factor approximates  e¸¢t  for ¸¢t à 0 

n  For EF, |G| is not bounded by 1 

n  For Trapezoidal Rule, local (small¸¢t) approximation is O(¸¢t2), but     |
G| à -1 as  ¸¢t à -1 . 

n  BDF2 will give 2nd-order accuracy, stability, and |G|à0 as ¸¢t à -1 . 
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BDFk Formulas:  GTE = O(¢tk) 

= O(nfinal∆t2)

= O(∆tT )

= O(∆t)T.

We refer to GTE as the global truncation error. It is the error in the final result at time T . Note
that, if we reduce ∆t, we must increase nfinal = T/∆t so that we compare errors at the same final
time T . Invariably, LTE = ∆tGTE. Moreover, GTE scales as T . Longer time integration thus
implies a need for a smaller truncation error. In the case of EB and EF the GTE is O(∆t), that is,
the methods are first order in time. We would expect therefore that reducing ∆t by a factor of 2
(and doubling the number of timesteps) would reduce the temporal error at time T by a factor of
2.

To generate higher-order methods one has several choices. Here, we consider backward-difference
formulae of order k (BDFk). These methods offer flexibility in terms of order and stability. Al-
though classic BDFk is implicit, we show how they can be combined with extrapolation to develop
explicit or even semi-implicit methods.

The idea behind BDFk is to approximate du
dt at time the current timestep, tn, with a finite

difference formula based on the unknown value, un, and known past values un−1, un−2, . . . , un−k.
One way to generate the finite difference formula is to fit an interpolating polynomial of degree
k through the solution u(t) at time points tn, tn−1, . . . , tn−k and evaluate the derivative of this
polynomial at the current timestep level, tn. The situation is as pictured in Fig. 3. For uniform

∆t, the formulas for k = 1, 2, and 3 are

BDF1: ∂u
∂t

∣

∣

∣

tn
=

un − un−1

∆t
+ O(∆t) (38)

BDF2: ∂u
∂t

∣

∣

∣

tn
=

3un − 4un−1 + un−2

2∆t
+ O(∆t2) (39)

BDF3: ∂u
∂t

∣

∣

∣

tn
=

11un − 18un−1 + 9un−2 − 2un−3

6∆t
+ O(∆t3). (40)

The right hand side of the ODE can either be evaluated directly at time tn, in which case the
method is implicit, or by using kth-order extrapolation.

To illustrate the procedure, we consider the case k=2 using the model problem

du

dt
= g(u, t) + f(u, t). (41)

To begin, evaluate each term at time tn,

du

dt

∣

∣

∣

∣

tn
= g(u, t)|tn + f(u, t)|tn . (42)

and choose a method of approximation for each. For the time derivative, we use the BDF2 for-
mula (39). If g is nonlinear and governing relatively slowly evolving behavior, it might be most
conveniently evaluated explicitly using 2nd-order extrapolation. Conversely, if f is governing fast
behavior, one might need to treat it implicitly. Such an approach gives rise to the following semi-
implict scheme,

3un − 4un−1 + un−2

2∆t
+O(∆t2) =

(

2gn−1 − gn−2 +O(∆t2)
)

+ f(un, tn), (43)

10

n  Unlike the trapezoidal rule, these methods are L-stable: 
–  |G|à0 as ¸¢t à -1  

n  k-th order accurate 
n  Implicit 
n  Unconditionally stable only for k · 2 
n Multi-step:  require data from previous timesteps 
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Relationship between LTE and GTE 

yn = y0 +

Z T

0
f(t, y) dt

• If LTE = O(�t2), then commit O(�t2) error on each step.

• Interested in final error at time t = T = n�t.

• Interested in the final error en := y(tn) � yn in the limit n �! 1, n�t = T fixed.

• Nominally, the final error will be proportional to the sum of the local errors,

en ⇠ C n · LTE ⇠ C n�t2 ⇠ C (n�t)�t ⇠ C T�t

• GTE ⇠ LTE /�t

f 
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bdfk_orbit.m 
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Explicit High-Order Methods 

n  High-order explicit methods are of interest for several reasons: 

–  Lower cost per step than implicit (but possibly many steps if 
system has disparate timescales, i.e., is stiff --- spring-mass 
example). 

–  More accuracy 

–  For k > 2, encompass part of the imaginary axis near zero, so 
stable for systems having purely imaginary eigenvalues. 

–  We’ll look at three classes of high-order explicit methods: 
• BDFk / Ext k 
•  kth-order Adams Bashforth 
• Runge-Kutta methods 

–  Each has pros and cons… 
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Higher-Order Explicit Timesteppers:  BDFk/EXTk 

• Idea: evaluate left-hand and right-hand sides at tk+1 to accuracy O(�tk).

dy

dt

����
tk+1

= f(t, y)|tk+1

• Can treat term on the right via kth-order extrapolation.

• For example, for k = 2,

3yk+1 � 4yk + yk�1

2�t
+ O(�t2) = 2fk � fk�1 + O(�t2)

• Solve for yk+1 in terms of known quantities on the right:

yk+1 =

2

3


4yk � yk�1

2

+ �t(2fk � fk�1)

�
+ O(�t3)

• Note that LTE is O(�t3), GTE=O(�t2).

1
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n  Here we see that the k=3 curve encompasses part of the imaginary axis near 
the origin of the ¸¢t plane, which is important for stability of non-dissipative 
systems. 

Stable 
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Higher-Order Explicit Timesteppers: kth-order Adams-Bashforth 

• Adams-Bashforth methods are a somewhat simpler alternative to BDFk/EXTk.

• Time advancement via integration:

yk+1 = yk +

Z tk+1

tk

f(t,y) dt

• AB1:

Z tk+1

tk

f(t,y) dt = hkfk + O(h2
)

• AB2:

Z tk+1

tk

f(t,y) dt = hkfk +

h2
k

2


fk � fk�1

hk�1

�
+ O(h3

)

= h

✓
3

2

fk � 1

2

fk�1

◆
+ O(h3

) (if h is constant)

• AB3:

Z tk+1

tk

f(t,y) dt = h

✓
23

12

fk � 16

12

fk�1 +

5

12

fk�2

◆
+ O(h4

) (if h is constant)

• LTE for ABm is O(hm+1
). GTE for ABm is O(hm

).

1
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Stability of Various Timesteppers 

n  Derived from model problem 

n  Stability regions shown in the λΔt plane  (stable inside the curves) 

~ 0.72 

n  To make effective use of this plot, we need to know something about the 
eigenvalues λ of the Jacobian. 

n  But first, How are these plots generated? 
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Determining the Neutral-Stability Curve 
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Matlab Code:  stab.m 
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